Extensions 1→N→G→Q→1 with N=C32xC6 and Q=S3

Direct product G=NxQ with N=C32xC6 and Q=S3
dρLabelID
S3xC32xC6108S3xC3^2xC6324,172

Semidirect products G=N:Q with N=C32xC6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C32xC6):1S3 = C2xC3wrS3φ: S3/C1S3 ⊆ Aut C32xC6183(C3^2xC6):1S3324,68
(C32xC6):2S3 = C2xC33:S3φ: S3/C1S3 ⊆ Aut C32xC6186+(C3^2xC6):2S3324,77
(C32xC6):3S3 = C6xC32:C6φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6):3S3324,138
(C32xC6):4S3 = C2xHe3:4S3φ: S3/C1S3 ⊆ Aut C32xC654(C3^2xC6):4S3324,144
(C32xC6):5S3 = C6xHe3:C2φ: S3/C1S3 ⊆ Aut C32xC654(C3^2xC6):5S3324,145
(C32xC6):6S3 = C2xHe3:5S3φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6):6S3324,150
(C32xC6):7S3 = C3:S3xC3xC6φ: S3/C3C2 ⊆ Aut C32xC636(C3^2xC6):7S3324,173
(C32xC6):8S3 = C6xC33:C2φ: S3/C3C2 ⊆ Aut C32xC6108(C3^2xC6):8S3324,174
(C32xC6):9S3 = C2xC34:C2φ: S3/C3C2 ⊆ Aut C32xC6162(C3^2xC6):9S3324,175

Non-split extensions G=N.Q with N=C32xC6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C32xC6).1S3 = C32:Dic9φ: S3/C1S3 ⊆ Aut C32xC6108(C3^2xC6).1S3324,8
(C32xC6).2S3 = He3:C12φ: S3/C1S3 ⊆ Aut C32xC6363(C3^2xC6).2S3324,13
(C32xC6).3S3 = C32:2Dic9φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6).3S3324,20
(C32xC6).4S3 = C33:Dic3φ: S3/C1S3 ⊆ Aut C32xC6366-(C3^2xC6).4S3324,22
(C32xC6).5S3 = C2xC32:D9φ: S3/C1S3 ⊆ Aut C32xC654(C3^2xC6).5S3324,63
(C32xC6).6S3 = C2xC32:2D9φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6).6S3324,75
(C32xC6).7S3 = C3xC32:C12φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6).7S3324,92
(C32xC6).8S3 = C3xC9:C12φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6).8S3324,94
(C32xC6).9S3 = C33:4C12φ: S3/C1S3 ⊆ Aut C32xC6108(C3^2xC6).9S3324,98
(C32xC6).10S3 = C3xHe3:3C4φ: S3/C1S3 ⊆ Aut C32xC6108(C3^2xC6).10S3324,99
(C32xC6).11S3 = C33.Dic3φ: S3/C1S3 ⊆ Aut C32xC6108(C3^2xC6).11S3324,100
(C32xC6).12S3 = He3:6Dic3φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6).12S3324,104
(C32xC6).13S3 = C6xC9:C6φ: S3/C1S3 ⊆ Aut C32xC6366(C3^2xC6).13S3324,140
(C32xC6).14S3 = C2xC33.S3φ: S3/C1S3 ⊆ Aut C32xC654(C3^2xC6).14S3324,146
(C32xC6).15S3 = C32xDic9φ: S3/C3C2 ⊆ Aut C32xC6108(C3^2xC6).15S3324,90
(C32xC6).16S3 = C3xC9:Dic3φ: S3/C3C2 ⊆ Aut C32xC6108(C3^2xC6).16S3324,96
(C32xC6).17S3 = C32:5Dic9φ: S3/C3C2 ⊆ Aut C32xC6324(C3^2xC6).17S3324,103
(C32xC6).18S3 = D9xC3xC6φ: S3/C3C2 ⊆ Aut C32xC6108(C3^2xC6).18S3324,136
(C32xC6).19S3 = C6xC9:S3φ: S3/C3C2 ⊆ Aut C32xC6108(C3^2xC6).19S3324,142
(C32xC6).20S3 = C2xC32:4D9φ: S3/C3C2 ⊆ Aut C32xC6162(C3^2xC6).20S3324,149
(C32xC6).21S3 = C32xC3:Dic3φ: S3/C3C2 ⊆ Aut C32xC636(C3^2xC6).21S3324,156
(C32xC6).22S3 = C3xC33:5C4φ: S3/C3C2 ⊆ Aut C32xC6108(C3^2xC6).22S3324,157
(C32xC6).23S3 = C34:8C4φ: S3/C3C2 ⊆ Aut C32xC6324(C3^2xC6).23S3324,158
(C32xC6).24S3 = Dic3xC33central extension (φ=1)108(C3^2xC6).24S3324,155

׿
x
:
Z
F
o
wr
Q
<