extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32×C6).1S3 = C32⋊Dic9 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).1S3 | 324,8 |
(C32×C6).2S3 = He3⋊C12 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 3 | (C3^2xC6).2S3 | 324,13 |
(C32×C6).3S3 = C32⋊2Dic9 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 6 | (C3^2xC6).3S3 | 324,20 |
(C32×C6).4S3 = C33⋊Dic3 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 6- | (C3^2xC6).4S3 | 324,22 |
(C32×C6).5S3 = C2×C32⋊D9 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 54 | | (C3^2xC6).5S3 | 324,63 |
(C32×C6).6S3 = C2×C32⋊2D9 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 6 | (C3^2xC6).6S3 | 324,75 |
(C32×C6).7S3 = C3×C32⋊C12 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 6 | (C3^2xC6).7S3 | 324,92 |
(C32×C6).8S3 = C3×C9⋊C12 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 6 | (C3^2xC6).8S3 | 324,94 |
(C32×C6).9S3 = C33⋊4C12 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).9S3 | 324,98 |
(C32×C6).10S3 = C3×He3⋊3C4 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).10S3 | 324,99 |
(C32×C6).11S3 = C33.Dic3 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).11S3 | 324,100 |
(C32×C6).12S3 = He3⋊6Dic3 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 6 | (C3^2xC6).12S3 | 324,104 |
(C32×C6).13S3 = C6×C9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 36 | 6 | (C3^2xC6).13S3 | 324,140 |
(C32×C6).14S3 = C2×C33.S3 | φ: S3/C1 → S3 ⊆ Aut C32×C6 | 54 | | (C3^2xC6).14S3 | 324,146 |
(C32×C6).15S3 = C32×Dic9 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).15S3 | 324,90 |
(C32×C6).16S3 = C3×C9⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).16S3 | 324,96 |
(C32×C6).17S3 = C32⋊5Dic9 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 324 | | (C3^2xC6).17S3 | 324,103 |
(C32×C6).18S3 = D9×C3×C6 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).18S3 | 324,136 |
(C32×C6).19S3 = C6×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).19S3 | 324,142 |
(C32×C6).20S3 = C2×C32⋊4D9 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 162 | | (C3^2xC6).20S3 | 324,149 |
(C32×C6).21S3 = C32×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 36 | | (C3^2xC6).21S3 | 324,156 |
(C32×C6).22S3 = C3×C33⋊5C4 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).22S3 | 324,157 |
(C32×C6).23S3 = C34⋊8C4 | φ: S3/C3 → C2 ⊆ Aut C32×C6 | 324 | | (C3^2xC6).23S3 | 324,158 |
(C32×C6).24S3 = Dic3×C33 | central extension (φ=1) | 108 | | (C3^2xC6).24S3 | 324,155 |