extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32xC6).1S3 = C32:Dic9 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).1S3 | 324,8 |
(C32xC6).2S3 = He3:C12 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 3 | (C3^2xC6).2S3 | 324,13 |
(C32xC6).3S3 = C32:2Dic9 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 6 | (C3^2xC6).3S3 | 324,20 |
(C32xC6).4S3 = C33:Dic3 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 6- | (C3^2xC6).4S3 | 324,22 |
(C32xC6).5S3 = C2xC32:D9 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 54 | | (C3^2xC6).5S3 | 324,63 |
(C32xC6).6S3 = C2xC32:2D9 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 6 | (C3^2xC6).6S3 | 324,75 |
(C32xC6).7S3 = C3xC32:C12 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 6 | (C3^2xC6).7S3 | 324,92 |
(C32xC6).8S3 = C3xC9:C12 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 6 | (C3^2xC6).8S3 | 324,94 |
(C32xC6).9S3 = C33:4C12 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).9S3 | 324,98 |
(C32xC6).10S3 = C3xHe3:3C4 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).10S3 | 324,99 |
(C32xC6).11S3 = C33.Dic3 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).11S3 | 324,100 |
(C32xC6).12S3 = He3:6Dic3 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 6 | (C3^2xC6).12S3 | 324,104 |
(C32xC6).13S3 = C6xC9:C6 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 36 | 6 | (C3^2xC6).13S3 | 324,140 |
(C32xC6).14S3 = C2xC33.S3 | φ: S3/C1 → S3 ⊆ Aut C32xC6 | 54 | | (C3^2xC6).14S3 | 324,146 |
(C32xC6).15S3 = C32xDic9 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).15S3 | 324,90 |
(C32xC6).16S3 = C3xC9:Dic3 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).16S3 | 324,96 |
(C32xC6).17S3 = C32:5Dic9 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 324 | | (C3^2xC6).17S3 | 324,103 |
(C32xC6).18S3 = D9xC3xC6 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).18S3 | 324,136 |
(C32xC6).19S3 = C6xC9:S3 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).19S3 | 324,142 |
(C32xC6).20S3 = C2xC32:4D9 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 162 | | (C3^2xC6).20S3 | 324,149 |
(C32xC6).21S3 = C32xC3:Dic3 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 36 | | (C3^2xC6).21S3 | 324,156 |
(C32xC6).22S3 = C3xC33:5C4 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 108 | | (C3^2xC6).22S3 | 324,157 |
(C32xC6).23S3 = C34:8C4 | φ: S3/C3 → C2 ⊆ Aut C32xC6 | 324 | | (C3^2xC6).23S3 | 324,158 |
(C32xC6).24S3 = Dic3xC33 | central extension (φ=1) | 108 | | (C3^2xC6).24S3 | 324,155 |